Adaptive Network Based Inference System for Estimation of Surface Roughness in End-milling
نویسندگان
چکیده
This paper presents a new approach for surface roughness (Ra) prediction during milling by using dynamometer to measure cutting forces signals and cutting conditions. End milling machining process of hardened die steel with carbide end mill, was modeled in this paper using the adaptive neuro fuzzy inference system (ANFIS) to predict the effect of machining variables (spindle speed, feed rate and axial/radial depth of cut) on surface roughness. In this contribution we also discussed the construction of a ANFIS system that seeks to provide a linguistic model for the estimation of surface roughness from the knowledge embedded in the neural network. The predicted surface roughness values determined by ANFIS were compared with experimental measurements. The comparison indicates that the performance of this method turned out to be satisfactory for evaluating Ra, within a 6% mean percentage error and 96% accuracy rate.
منابع مشابه
An Application of Computational Intelligence Technique for Predicting Surface Roughness in End Milling of Inconel-718
In this paper, an attempt has been made to design an computational intelligence technique based expert system using Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting surface roughness in end milling of Inconel 718. Two different types of membership functions are adopted for analysis in ANFIS training and compared their differences regarding the accuracy rate of the surface roughness ...
متن کاملPrediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملSimulation and Visual Control of Chip Size for Constant Surface Roughness
A visual cutting chip control system is designed to automatically adjust feed rate in order to maintain constant surface roughness in ball-end milling. The proposed visual control system has a modular structure, consisting of an optical vision system (OVS), an adaptive cutting chip size-control loop for a feed servo and a surface roughness in-process prediction model. The OVS is employed to acq...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کامل